F(-2)=x^2-17

Simple and best practice solution for F(-2)=x^2-17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(-2)=x^2-17 equation:



(-2)=F^2-17
We move all terms to the left:
(-2)-(F^2-17)=0
We add all the numbers together, and all the variables
-(F^2-17)-2=0
We get rid of parentheses
-F^2+17-2=0
We add all the numbers together, and all the variables
-1F^2+15=0
a = -1; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-1)·15
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-1}=\frac{0-2\sqrt{15}}{-2} =-\frac{2\sqrt{15}}{-2} =-\frac{\sqrt{15}}{-1} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-1}=\frac{0+2\sqrt{15}}{-2} =\frac{2\sqrt{15}}{-2} =\frac{\sqrt{15}}{-1} $

See similar equations:

| -9(10+b)=-171 | | p—18=3 | | 8(x=2)=5(x-4) | | X/2+2x/15=19/30 | | (3x+2)+3=60 | | w/4+15=20 | | (0.75)(5y)-9=8.25 | | 7/2y=35 | | 10+4a=4+3a | | 1+x/3=9 | | p–18=3 | | 3x-8=2x=15 | | 3x-39=2x+24 | | 1x=24-4 | | 36+3x=5x+7(-x+8) | | 9x/2+27/2=45 | | 7x+1+3x-1=90 | | 108=-2+10a | | 84(64x)=8(x+3) | | 9x+27/2=45 | | 1216=12x+340 | | x0.2=x-15 | | X^2-4x+95=0 | | 10x^2+6x+35=0 | | 6y-24=360 | | 100x=13+x | | 0.08x=250 | | 5x^2+100x-500=0 | | X-6/3=x/12+5/4 | | 5E2+100x-500=0 | | x/28-1/4=8 | | -(-x+5)=17 |

Equations solver categories